Subsections

4.3 WP6: Applications of Thermoelasticity

Theory thermo-Elasticity:

\begin{displaymath}\left\lbrace
\begin{array}{ll}
\nabla \uuline{\sigma} + \ulin...
...ilon_{vol}}{\partial t} & \text{Diffusivity}
\end{array}\right.\end{displaymath} (4.1)

Theory thermo-poroelasticity:

\begin{displaymath}\left\lbrace
\begin{array}{ll}
\cfrac{\partial p}{\partial t}...
...\partial t} & \text{Temperature diffusivity}
\end{array}\right.\end{displaymath} (4.2)

where the coefficient of volumetric thermal expansion for variation in fluid content at constant frame volume is

$\displaystyle \beta_e = \alpha \beta_d + \phi (\beta_f - \beta_s)$ (4.3)

where usually $\beta_f > \beta_s$. The drained volumetric thermal expansion coefficient is

$\displaystyle \beta_d = \beta_s; \:$   (for an ideal porous medium) (4.4)

Drained thermoelastic effective stress coefficient ($K$: Bulk modulus)

$\displaystyle \alpha_d = K \: \beta_d$ (4.5)

and the drained specific heat at constant strain divided reference temperature is

$\displaystyle m_d = \frac{c_d}{T_0}$ (4.6)

4.3.1 Exercise 1: Thermal stress around a wellbore

4.3.2 Exercise 2: Thermal stress in a reservoir

[Exercise to be based on https://doi.org/10.3390/en14165054]

Constitutive equation:

$\displaystyle \uuline{\sigma} = \uuline{C} \cdot \uuline{\varepsilon} \color{red} + 3 \alpha_L K \theta \uuline{I}; \:\: \theta = T - T_0$ (4.7)

Assuming uniform cooling leads to no horizontal strains: $\varepsilon_{11} = \varepsilon_{22} = 0$.

Furthermore, assuming a compliant caprock, no change of overburden, and small change in pore pressure leads to constant effective vertical stress $\sigma_{33} = $cst.

Let us use the matrix notation for the normal stresses (shear stresses are zero):

\begin{displaymath}%compliance matrix
\left[
\begin{array}{c}
\sigma_{11} \\
\...
...
3 \alpha_L K \theta \\
3 \alpha_L K \theta
\end{array}\right]\end{displaymath} (4.8)

Solving for $\sigma_{11}$ and $\sigma_{33}$ results in:

\begin{displaymath}\left\lbrace
\begin{array}{ll}
\sigma_{11} = \cfrac{\nu E}{(1...
...\nu)} \varepsilon_{33} + 3 \alpha_L K \theta
\end{array}\right.\end{displaymath} (4.9)

Replacing $\varepsilon_{33}$ in the first equation leads to

$\displaystyle \sigma_{11} = \left( \frac{\nu}{1-\nu} \right) \sigma_{33} + \left( \frac{1-2\nu}{1-\nu} \right) 3 \alpha_L K \theta$ (4.10)

which expressed in terms of the Young's modulus ( $K = E/[3(1-2\nu)]$) is:

$\displaystyle \sigma_{11} = \left( \frac{\nu}{1-\nu} \right) \sigma_{33} + \frac{\alpha_L E}{1-\nu} \theta$ (4.11)

Hence, a variation of horizontal stress with temperature is

$\displaystyle \frac{\partial \sigma_{11}}{\partial \theta} = + \frac{\alpha_L E}{1-\nu}$ (4.12)

Which is in the order of

$\displaystyle \frac{\partial \sigma_{11}}{\partial \theta} = 0.1 \frac{\text{MPa}}{^{\circ}\text{C}}$ (4.13)

for $\alpha_L = 10^{-5}$ $1/^{\circ}$C, $E = 10$ GPa, and $\nu = 0.2$.