Shear failure and wellbore breakouts

Wellbore breakouts occur when the stress anisotropy $\sigma_1/\sigma_3$ surpasses the shear strength limit of the wellbore rock. Maximum anisotropy is found at $\theta = \pi/2$ and $3\pi/2$, for which

\begin{displaymath}\left\lbrace
\begin{array}{rcl}
\sigma_1 = \sigma_{\theta \th...
...\\
\sigma_3 = \sigma_{rr} & = & (P_W - P_p)
\end{array}\right.\end{displaymath} (6.7)

Figure 6.8: Initiation of wellbore breakouts
\includegraphics[scale=0.65]{.././Figures/split/7-5.pdf}

Hence, replacing $\sigma _1$ and $\sigma _3$ into a shear failure equation (Eq. ) permits finding the mud pressure $P_{Wshear}$ that would produce a tiny shear failure (or breakout) at $\theta = \pi/2$ and $3\pi/2$:

$\displaystyle \left[
-(P_W - P_p) +3\sigma_{Hmax} -\sigma_{hmin}
\right] = UCS + q \left[ P_W - P_p \right]$ (6.8)

Hence,

$\displaystyle P_{Wshear} = P_p + \frac{3\sigma_{Hmax} -\sigma_{hmin}
- UCS}{1+q}$ (6.9)

Mud pressure $P_W < P_{Wshear}$ would extend the breakout further in the neighbohood of $\theta = \pi/2$ and $3\pi/2$ (See Fig. 6.9). Thus, $P_{Wshear}$ is the lowest mud pressure before initiation of breakouts.

Figure 6.9: Example of wellbore breakout [Zoback 2013 - Fig. 6.15]. Observe the inclination of shear fractures as the propagate into the rock. The material that falls into the wellbore is taken out as drilling cuttings.
\includegraphics[scale=0.50]{.././Figures/split/7-7.pdf}

PROBLEM 6.1: Calculate the minimum mud weight (ppg) in a vertical wellbore for avoiding shear failure (breakouts) in a site onshore at 7000 ft of depth where $S_{hmin} =$ 4300 psi and $S_{Hmax} =$ 6300 psi and with hydrostatic pore pressure. The rock mechanical properties are $UCS =$ 3500 psi, $\mu_i=$ 0.6, and $T_s$ = 800 psi.

SOLUTION
Hydrostatic pore pressure results in:

$\displaystyle P_p = 7000$    ft$\displaystyle \times 0.44$    psi/ft$\displaystyle = 3080$    psi

The effective horizontal stresses are:

$\displaystyle \sigma_{Hmax} = 6300$    psi$\displaystyle - 3080$    psi$\displaystyle = 3220$    psi$\displaystyle $

and

$\displaystyle \sigma_{hmin} = 4300$    psi$\displaystyle - 3080$    psi$\displaystyle = 1220$    psi$\displaystyle $

The friction angle is $\arctan(0.6)=30.96^{\circ}$, and therefore, the friction stress anisotropy ratio is

$\displaystyle q = \frac{1+ \sin 30.96^{\circ} }{1- \sin 30.96^{\circ} } = 3.12
$

Thus, the minimum mud pressure for avoiding shear failure (breakouts) is

$\displaystyle P_{Wshear} = 3080$    psi$\displaystyle + \frac{3 \times 3220 \text{ psi} - 1220 \text{ psi} - 3500 \text{ psi} }{1+3.12} =
4279 \text{ psi}
$

This pressure can be achieved with an equivalent circulation density of

$\displaystyle \frac{4279 \text{ psi}} {7000 \text{ ft}} \times
\frac{8.3 \text{ ppg}} {0.44 \text{ psi/ft}} =
11.57 \text{ ppg} \: \: \blacksquare
$



Subsections