Depletion and injection of fluids in the subsurface cause changes in pore pressure and therefore on effective stresses. Fluid injection such as in hydraulic fracturing, water-flooding, and waste-water disposal can reach adjacent faults (if any) and decrease the effective normal stress acting on faults. In hydraulic fracturing, the injection of fluids is temporary and limited to the fracture completion size. In water-flooding, pressure build-up is limited by the producer wells. In waste-water injection, the pressure build-up is controlled by the aquifer size, compressibility and compartmentalization.
The change of stresses produced by increases of pore pressure assuming constant total vertical stress and negligible poroelastic effects is
(5.15) |
The result is a shift of the Mohr circle to the left, closer to the shear failure or “reactivation” line. The magnitude of change of pore pressure needed to reactivate a fault is (at least) equal to the horizontal distance between the point of the Mohr-circle of such fault and the failure line. Hence, a critically oriented fracture needs the lowest to reactivate.